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Various conceptual issues have been brought into focus by
recent experiments studying the role of the superior colliculus
in the control of coordinated movements of the eyes and
head, the interaction of saccadic and vergence movements,
and cognitive processes influencing the initiation and
execution of saccades.
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Abbreviations
BN burst neuron
EMG electromyograph
GABA γ-aminobutyric acid
IBN inhibitory burst neuron
OPN omnipause neuron
SC superior colliculus
VOR vestibulo-ocular reflex

Introduction
In primates, photoreceptor cones are concentrated in and
around the fovea, and visual acuity falls off sharply as a
function of the distance of the image from the fovea.
Nonetheless, we rarely notice gradations in spatial resolu-
tion when perceiving our environment. The photoreceptors
are mounted on a mobile platform, and coordinated move-
ments of the eyes and head implement high spatial
frequency samples of the visual environment by shifting
the line-of-sight from one part of the visual scene to anoth-
er. Understanding the strategies and mechanisms by which
gaze shifts are used to sample the visual environment and
the perceptual processes that integrate information
obtained from successive samples is as critical to a complete
description of visual perception as is an understanding of
events taking place at the retina.

The superior colliculus (SC), a midbrain structure, plays an
important role in triggering and organizing orienting move-
ments and is a useful model system for studying the neural
computations involved in the translation of sensory signals
into motor commands. The body of this review focuses on
conceptual issues emerging from a subset of recent papers
[1•,2–12,13•,14,15••,16•,17•,18,19•,20–25,26••–28••,29,30•,
31–37,38•–40•]. Recent work in other important areas
(e.g. anatomical studies of the intrinsic and extrinsic con-
nections of collicular neurons [41–43,44•,45,46,47•,
48,49•,50•,51–58,59••,60•,61••], electrophysiological and
lesion studies of collicular function [62•,63••,64,
65,66•,67•,68–72,73•,74,75•,76–78,79•,80•,81–85,86•,87,88],

the signals carried over afferent and efferent pathways
[89•,90•,91], and the development and testing of models of
collicular function [92•–95•]) is listed in the bibliography.
Research related to the development of the SC and the
development and coordination of sensory and motor maps
is periodically reviewed in the Development section of this
journal, published every February.

The collicular motor map
What is represented in the collicular map? How is it repre-
sented? The SC (or optic tectum) contains a motor map for
controlling orienting movements. Local electrical stimula-
tion of the SC in a variety of animals, including primates,
produces orienting responses that may involve coordinated
movements of the eyes, head, and body (see [1•,2] and ref-
erences therein). These stimulation experiments indicate
that the SC is involved in the generation of eye, head and
body movements, but they provide little information about
how the movements are represented at the level of indi-
vidual neurons. For example, microstimulation of rostral
regions of the SC usually produces eye movements. When
the head is unrestrained, microstimulation of intermediate
regions usually evokes combined eye–head movements
[3,4]. Microstimulation of the most caudal regions can pro-
duce movements of the eyes, head, and body. More than
one interpretation of these observations is possible.
Different types of motor signals may originate from differ-
ent regions of the SC — for example, eye movement
signals may originate from the rostral SC, whereas separate
eye movement and head movement signals may originate
from intermediate regions of SC. Alternatively, the activity
of movement-related cells throughout the rostral–caudal
extent of the colliculus could generate a signal requesting
a change in gaze. Requests for small changes in gaze, orig-
inating in the rostral SC, are usually implemented by
movements of the eyes, whereas requests for larger gaze
shifts, originating in more caudal areas, are usually imple-
mented by combined eye and head movements.

Parenthetically, note that the collicular motor maps cur-
rently being used in anatomical, physiological,
pharmacological and computational studies [5,6] were
defined using microstimulation in head-restrained sub-
jects and are grossly distorted. Electrical stimulation of
sites in the regions of the collicular motor map represent-
ing large gaze shifts drives the eye to approximately the
same orbital position regardless of whether the head is
restrained or unrestrained. The gaze shifts produced
when the head is restrained are reduced in amplitude by
approximately the amount that the head would have con-
tributed if free to move [2,4]. Consequently, when the
head is restrained, there may be a large dissociation
between the ‘desired’ change in gaze specified by the

Conceptual issues related to the role of the superior colliculus in
the control of gaze
David L Sparks



Conceptual issues related to the role of the superior colliculus in the control of gaze Sparks    699

locus of collicular activity and the stimulation-induced
movement that actually occurs. 

Have chronic single-unit recording experiments answered
the question of how coordinated eye–head movements are
represented by neuronal activity in SC? Does one 

population of neurons code for changes in eye position and
another population code for changes in head position? Or do
collicular neurons code for a change in gaze without speci-
fying the relative contributions of eye and head
movements? It is surprisingly difficult to determine whether
the activity of a collicular neuron codes for movements of
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Complicating factors in determining which motor commands are
generated by the activity of individual collicular neurons. (a) A
hypothetical case in which the discharge of a cell associated with a 30°
eye movement made when the head is restrained is identical to the
discharge associated with a 40° gaze shift accomplished by a 10° head
movement and a 30° eye movement. (b) Inadmissible statistical
solutions. (i) The graph depicts a section through the movement field of
a collicular cell. Number of spikes in the saccade-related burst is
plotted as a function of the amplitude of the saccade for movements in
the optimal direction. Note that the number of spikes (or peak frequency
of the burst, or average frequency of the burst, or any other measure

that we have considered) is not linearly related to saccade amplitude;
nor is it linearly related to saccade direction (not illustrated). (ii) With
this plot available, if told that two saccades occurred and the cell
generated 5 spikes before the first saccade and 15 spikes before the
second saccade, we could conclude that one of four sequences of
movements occurred: a,b,c or d). (iii) For cells with response/movement
fields of this type, measures of spike activity do not meet the criteria for
any useful scale of measurement of saccade amplitude and no useful
statistics are permitted. (c) A schematic diagram illustrating the problem
of interpreting neurophysiological recordings obtained in animals
making combined eye–head gaze shifts. See text for additional details.



the eyes, movements of the head, or changes in gaze. The
fact that collicular neurons discharge maximally before eye
movements with particular directions and amplitudes in
head-restrained animals does not necessarily mean that the
activity of the cells specifies a change in eye position. The
activity of the cells could specify a change in gaze that is
accomplished by a movement of the eyes when the head is
fixed (or when the eyes are centered in the orbits), but
accomplished by a combined eye and head movement if the
head is free to move. 

Comparing the activity of the same cell during combined
eye–head movements with the activity observed during
eye movements when the head is restrained can also be
misleading. Figure 1a illustrates a hypothetical case in
which the discharge of a cell associated with a 30° eye
movement made when the head is restrained is identical to
the discharge associated with a 40° gaze shift accomplished
by a 10° head movement and a 30° eye movement.
Therefore, the activity of the cell could specify a 30° eye
movement, a  10°  head  movement which was not
observed when the head was restrained, or a 40° gaze shift
(which was not fully achieved when the head was
restrained). None of these interpretations can be dismissed
because, even in subjects that have been performing ocu-
lomotor tasks with the head restrained for several months,
movements of the eyes are associated with vigorous neck
muscle activity [7–9], indicating that commands to move
the head are often generated even when head movement
is restrained.

Multiple regression methods relating cell firing rate to the
direction, amplitude, and speed of changes in eye, head,
and gaze position cannot be used to determine whether
the activity of a collicular neuron codes for changes in eye,
head, or gaze position. Movements of the eyes, move-
ments of the head, and changes in gaze are not
independent, but highly correlated. Moreover, as illustrat-
ed in Figure 1b, when used as a measure of the parameters
of the movements of the eyes, head, or gaze, the activity of
individual collicular neurons does not meet the require-
ments for any useful scale of measurement. For example,
their firing pattern does not meet the criteria for an inter-
val scale: equal changes in number of spikes do not
indicate that equal changes in saccade amplitude have
occurred. Nor do measures of collicular activity meet the
criteria for an ordinal scale of measurement. A larger (or
smaller) number of spikes does not mean that a movement
with a larger (or smaller) amplitude has occurred. Because
measures of the activity of single collicular neurons do not
meet the criteria for any useful scale of measurement, no
useful statistics are permitted.

A recent study has provided evidence that motor-related
activity in the SC is associated with the amplitude and
direction of the gaze shift, and that it is only weakly relat-
ed to eye or head movements [10]. Assuming that the
level of neuronal activity is related to the relative location

of a cell within the active population, the authors gener-
ated statistics-free predictions about the patterns of
neural activity expected for cells coding for changes in
gaze, or eye, or head position during behavioral condi-
tions that dissociate movements of the eyes and head.
For all the cells tested, the pattern of activity observed
matched the pattern expected for cells coding for a
change in gaze. None of the cells studied generated the
patterns of activity expected for cells specifying changes
in eye or head position. 

Can microstimulation experiments be used to test hypothe-
ses about how changes in gaze, eye or head position are
coded by the activity of collicular neurons? Stimulation trains
that evoke combined movements of the eyes and head could
activate one set of neurons generating requests to move the
eyes and a second group of neurons producing requests to
move the head. Alternatively, stimulation trains could acti-
vate a single functional type of cell generating requests for
changes in gaze — requests that may be implemented by
movements of the eyes or combined movements of the eyes
and head. If combined eye and head movements occur
because stimulation of a site in the collicular map activates
two classes of cells, one producing an eye movement com-
mand and the other a command to move the head, then
repeated stimulation of the same site using the same stimu-
lation parameters should always produce approximately the
same eye and head movements. This is not what is observed.
Repeated microstimulation of a single collicular site with the
same stimulation parameters produces gaze shifts of similar
directions and amplitudes that are accomplished using many
combinations of eye and head movements, depending on the
initial positions of the eyes in their orbits (see [2]). 

Whether neurons throughout the rostral–caudal extent of
the SC generate a single unitary signal for the desired gaze
displacement or generate eye movement commands in one
region and commands for eye and head movements in
other regions is an important issue that must be resolved.
The design of experiments and the interpretation of the
results of studies assessing the types of signals conveyed to
the SC from other brain regions, the types of transforma-
tions the collicular signals must undergo, and the intrinsic
organization of the SC are influenced by our views of
which motor commands are found in the SC. Results of
recent experiments investigating the disparity sensitivity
of SC neurons [11,12,13•], studies of changes in gaze
involving combined saccades and vergence movements
[14,15••,16•], evidence that the SC is involved in reaching
movements of the arm (see [17•] and references therein),
and studies implicating the SC in avoidance behaviors (see
[1] and references therein) have not been incorporated into
general views of the function of the SC. 

Transformation of collicular signals — a neural
uncertainty problem?
Much remains to be learned about how the movement-
related signals observed in the SC are transformed into
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those required by the motoneuron pools innervating the
extraocular and neck muscles. The physiological and mor-
phological bases for synergistic movements of the eyes and
head during orienting responses are well established (see
[18,19•] and references therein). For example, signals car-
ried by reticulospinal neurons are related to both neck
muscle activity and eye position, and they are distributed
not only to the spinal cord but also to the abducens nucle-
us and other structures involved in the control of eye
movements [20]. 

Two general types of models have been developed to
account for the coordination of eye and head movements
during large gaze shifts. Anatomical pathways allowing
the same signals to be sent to neck and eye muscles jus-
tify the development of models (hereafter referred to as
gaze comparator models) [21] in which a reference signal
of desired gaze displacement serves as the input to a sin-
gle gaze motor error comparator that controls both eye
and head movements. A second type of model (to be
referred to as separate comparator models) [22] assumes
that the gaze displacement command is decomposed into
separate eye and head displacement signals that use sep-
arate comparators, separate command generators, and
separate feedback circuits to control the eye and head
components of the gaze shift.

Experimental findings used to support either class of
model are equivocal. For example, the finding that sub-
jects compensate for electrical stimulation-induced
perturbations to ongoing gaze shifts [23] has been cited as
evidence for gaze comparator models, but models with
separate eye and head comparators can also account for
the findings. The findings that the activity of inhibitory
burst neurons (IBNs), previously thought to be related to
eye velocity, is best correlated with gaze velocity [24,25]
and that the activity of pontine omnipause neurons
(OPNs) in the cat is better correlated with gaze duration
than the duration of the eye component of the gaze shift
[26••] have been interpreted as support for gaze compara-
tor models. Similarly, the finding that the activity of
OPNs in the monkey is better correlated with the dura-
tion of eye movements than the duration of gaze shifts
[27••] has been interpreted as support for the separate
comparator model. The results of experiments recording
the activity of various types of cells in the brainstem dur-
ing combined eye–head gaze shifts, however, have no
unambiguous interpretation for reasons related to the
vestibulo-ocular reflex (VOR) and other reflexes that
affect movements of the eyes.

The VOR provides an automatic mechanism for control-
ling the interaction between eye and head movements.
Images of the visual scene are stabilized on the retina by
vestibularly induced rotations of the eye that are equal and
opposite to head movements. But large gaze shifts are
often accomplished by movements of the head and the
eyes in the same direction. Numerous studies have shown

that the gain of the VOR is reduced during gaze shifts and
that the amount of the attenuation increases as the ampli-
tude of the gaze shift increases (see [28••] and references
therein). Consistent with these behavioral results, Roy and
Cullen [28••] observed an amplitude-dependent reduction
in the head-velocity signal being conveyed to the
motoneurons when recording the activity of neurons in the
VOR pathway during combined eye–head gaze shifts. The
exact time course of the changes in VOR gain is still being
studied, and proposals found in the literature range from a
discrete on/off switch of VOR (where the VOR may be
‘switched off’ during voluntary head movements), to an
exponential decrease in VOR gain beginning at the onset
of the gaze shift (see [28••] for references).

Early experiments relating the activity of cortical and
subcortical neurons to the amplitude, direction, and
speed of saccadic eye movements were performed in
head-restrained animals, and, usually, saccade targets
were presented in a single depth plane. These condi-
tions minimize the contributions of the vestibular,
vergence, pursuit, and optokinetic subsystems to the
movements made to acquire saccade targets. However,
when the head is free to move, oculomotor subsystems
other than the saccadic system are active and may make
important contributions to gaze shifts. For example, if
the gain of the VOR is not reduced to zero during the
entire time course of a combined eye–head gaze shift,
then the eye movement that is executed will be different
from the eye movement requested by a putative saccadic
command circuit. This will happen because, downstream
from the saccadic command circuit and feedback loop,
the vestibular signal will modify the output of the
motoneuron pools, a resource shared by the saccadic and
vestibular systems. These points are illustrated in
Figure 1c. The right panels plot the eye and head move-
ments associated with two hypothetical gaze shifts of 20°
and 40° that are initiated when the eyes are in the center
of their orbits for the 20° gaze shift, or 20° in the direc-
tion of impending gaze shift. With these initial
conditions, large differences in the head contribution to
the gaze shifts will be obtained (see [2]). For the hypo-
thetical gaze shifts illustrated, the desired eye
displacement was 20° and 40°, and the head contribution
was 0° and 20°. The eye contribution, determined by the
difference between the desired eye displacement com-
mand and the eye movement produced by the VOR, was
20° for both gaze shifts. As illustrated, if the VOR is
active, the eye movement that is executed is not the
movement requested by the saccadic pulse-step genera-
tor. Note that in this hypothetical example, the number
of spikes generated by burst neurons (BNs) and the
duration of the pause in activity of OPNs are unrelated
to the amplitude of the eye contribution to gaze. Instead,
the activity of these neurons appears to be correlated
with gaze amplitude even though, for the model illus-
trated, both BNs and OPNs are explicitly involved in
generating an eye movement signal. 
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Thus, even if separate comparators for the eye and head
components of gaze exist, the activity of cells in the sac-
cadic pulse-step generator circuit may be poorly
correlated with the observed movements of the eyes, and
appear to be correlated with the change in gaze. This sit-
uation arises because copies of the motor command signal,
not visual or proprioceptive signals of the actual move-
ment, are used in the feedback circuit. Consequently, in
the absence of independent information about the desired
eye displacement signal or the status of the VOR, the pat-
terns of spike activity generated by brainstem neurons
involved in combined eye–head movements have no
unequivocal interpretation, and correlations between

measures of spike activity and various parameters of eye,
head and gaze movements may be misleading (see
[29,30•] for a discussion of similar issues). 

Similar problems are encountered when interpreting
results of vergence–saccade interactions [15••,16•].
Advances in understanding the neuronal bases of
eye–head coordination and saccadic–vergence interactions
will be impeded until we find a way to cope with this neur-
al uncertainty problem — namely, the problem of not
being able to determine whether or not the eye movement
that was executed is the one that was requested by the
subsystem under investigation.
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(a)

(b)

(c)

Complicating factors encountered in studying the neural correlates of
cognitive factors related to the control of gaze. (a) Stimulus and
response events during a ‘gap’ task used to study saccade initiation
(see e.g. [38•]). A central fixation target (Fix) appears in time interval A.
The offset of the fixation target is followed by an interval (B) in which no
targets are present. During interval C, one of several possible targets
(gray dot amongst black dots) appears and is followed after a saccadic
reaction time by a change in the direction of gaze (D). (b) The
hypothetical time course of a few putative sensory, motor, and covert
cognitive processes that may be associated with the stimulus and
response events. (c) The activity of a hypothetical neuron in the SC
recorded when a rhesus monkey was performing this task. Each tick
mark represents an action potential and each row of tick marks
represents a single trial. The cell displays a low rate of activity during
interval A, a decrease and then an increase in activity during interval B,
and two bursts of activity during interval C. The first of these bursts is
tightly coupled to the onset of the visual target and probably represents

sensory events. The second burst is tightly linked to saccade onset and
may represent a signal to initiate a saccade. The sustained activity
observed between the visual and motor burst is difficult to interpret
because it could be associated with visual processes, spatial attention,
or motor planning. The changes in activity observed during interval B
are especially difficult to interpret. These changes in activity occur in the
interval before the visual stimulus is presented and before information
about which movement will be required is available. Based upon the
animal’s past experience performing this task, this activity could be
related to expectations about when (dependent upon the range of gap
intervals) and where (dependent upon the range of target locations) the
target will occur. Or it could be related to planning a movement to the
expected location of the target. It has also been proposed that neural
activity of this type is related to the disengagement of fixation. Also, this
is an interval in which postural adjustments preparing for impending
head movements could occur.



This general problem of interpreting electrophysiological
findings when more than one oculomotor subsystem (e.g.
saccadic, pursuit, vergence, and/or vestibular) is active
may be magnified because brainstem neurons other than
the motoneurons (e.g. the pontine burst neurons and the
cells that make up the neural integrator) may also be
shared by oculomotor subsystems. Models will perform
differently depending upon whether these interactions
occur before or after feedback signals are formed. 

Coping with cognition
Several cognitive processes influence the probability of
occurrence, latency, accuracy and speed of saccadic eye
movements (see [31,32] for reviews). Many of these
processes probably alter the excitability of neurons
(including those in the SC) involved in controlling sac-
cadic movements. Indeed, variations in the discharge
pattern of collicular neurons have been ascribed to a num-
ber of ‘cognitive’ states: such as spatial attention [33,34],
motor memory [35], response selection [36], motor prepa-
ration [37,38•], motor set [39•], and target selection [40•].
As illustrated in Figure 2, during most behavioral tasks,
several cognitive processes may be active simultaneously,
and the activity of collicular neurons may be influenced
by more than one process. Because collicular neurons may
be resources shared by other processes, it does not follow
that changes in the activity of collicular neurons is evi-
dence that a particular covert process is ongoing or that
the neurons being recorded are an integral part of that
covert process. Indeed, at the level of the SC, isomorphic
relationships between the activity of single neurons or
classes of neurons and particular cognitive processes may
not exist. In theory, in carefully designed experiments
(such as holding other important cognitive processes con-
stant), the activity of collicular neurons could serve as an
index of the status of particular cognitive states or events.
But, in practice, neither the number of covert processes
affecting cellular activity nor the methods for controlling
their onset, offset, intensity or duration are known. Thus,
in general, it is difficult to ascribe changes in neuronal
activity to a particular cognitive process, especially if the
neurons reside in brain regions where the output of many
simultaneously active sensorimotor and cognitive process-
es are likely to converge.

To date, most studies of cognitive influences on neuronal
activity and saccadic performance can be described as sin-
gle-factor/single-level studies. The activity of neurons is
examined under conditions in which one cognitive factor of
special interest to the investigators (e.g. spatial attention,
response selection, or motor preparation) is thought to be
invoked or not invoked. Only rarely (see [38•,39•] for
exceptions) have experimenters tried to manipulate the
level of the factor (e.g. the degree of spatial attention or
amount of motor preparation). In many experiments, inde-
pendent behavioral measures ensuring that the
experimental manipulation was effective in producing the
expected behavioral consequence are not obtained. Formal

operational definitions of the cognitive factors being
manipulated are noticeably absent in this area of research,
and the operational definition of one cognitive state
(implied from the experimental procedures used) may be
identical to the operational definition of a ‘different’ cogni-
tive process. For example, the antecedent conditions used
to invoke the covert process of spatial attention — using
pre-cues to indicate a region of visual space in which an
important stimulus is likely to appear or the use of blocks of
trials in which the important stimulus appears in the same
region of visual space — are also antecedent conditions that
may invoke the process of motor preparation. Motor prepa-
ration can begin early during blocks of trials in which the
same movement is required or if the location of the goal of
the movement is pre-cued. The expected consequences
(implied from the experimental procedures) of invoking
spatial attention or motor preparation are also similar. Both
cognitive states are expected to produce changes in reac-
tion time, response accuracy, and neuronal activity. Clearly,
we need non-identical operational definitions for the vari-
ous cognitive states implicated in the neural control of
orienting movements.

Conclusions
Although it has been known for more than 50 years that
microstimulation of the SC produces coordinated move-
ments of the eyes and head, it is surprisingly difficult, for
technical reasons, to learn how these movements are rep-
resented at the level of individual collicular neurons. At
this point, the limited pertinent data suggest that the
activity of individual collicular neurons specifies a change
in gaze. There is no unequivocal evidence that cellular
activity specifies movements of the eyes or movements of
the head.

Advances in understanding the neural bases of eye–head
coordination and saccadic–vergence interactions will be
impeded until it is possible to know whether or not the eye
movements that are executed are the ones requested by
the neural circuit being studied. 

Current attempts to demonstrate isomorphic relationships
between the activity of single collicular neurons (or classes
of neurons) and particular cognitive processes may be mis-
guided. It may be more fruitful to focus on descriptions of
the behavioral and cognitive manipulations that produce
reliable changes in the excitability of collicular neurons
and the behavioral consequences of these changes.
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